Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
1.
BMC Complement Med Ther ; 24(1): 161, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632548

RESUMO

BACKGROUND: Polygonum multiflorum (PM), a widely used traditional Chinese medicine herb, is divided into two forms, namely raw polygonum multiflorum (RPM) and polygonum multiflorum praeparata (PMP), according to the processing procedure. Emerging data has revealed the differential hepatotoxicity of RPM and PMP, however, its potential mechanism is still unclear. METHODS: In our study, we investigated the differential hepatotoxicity of RPM and PMP exerted in C57BL/6 mice. First, sera were collected for biochemical analysis and HE staining was applied to examine the morphological alternation of the liver. Then we treated L02 cells with 5 mg / mL of RPM or PMP. The CCK8 and EdU assays were utilized to observe the viability and proliferation of L02 cells. RNA sequencing was performed to explore the expression profile of L02 cells. Western blotting was performed to detect the expression level of ferroptosis-related protein. Flow cytometry was used to evaluate ROS accumulation. RESULTS: In our study, a significant elevation in serum ALT, AST and TBIL levels was investigated in the RMP group, while no significant differences were observed in the PMP group, compared to that of the CON group. HE staining showed punctate necrosis, inflammatory cell infiltration and structural destruction can be observed in the RPM group, which can be significantly attenuated after processing. In addition, we also found RPM could decrease the viability and proliferation capacity of L02 cells, which can be reversed by ferroptosis inhibitor. RNA sequencing data revealed the adverse effect of PM exerted on the liver is closely associated with ferroptosis. Western blotting assay uncovered the protein level of GPX4, HO-1 and FTL was sharply decreased, while the ROS content was dramatically elevated in L02 cells treated with RPM, which can be partially restored after processing. CONCLUSIONS: The hepatotoxicity induced by RPM was significantly lower than the PMP, and its potential mechanism is associated with ferroptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Fallopia multiflora , Polygonum , Animais , Camundongos , Fallopia multiflora/química , Polygonum/química , Espécies Reativas de Oxigênio , Camundongos Endogâmicos C57BL
2.
Front Biosci (Landmark Ed) ; 29(3): 93, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38538280

RESUMO

BACKGROUND: Polygonum hydropiper L (PH) was widely used to treat dysentery, gastroenteritis, diarrhea and other diseases. Coptis chinensis (CC) had the effects of clearing dampness-heat, purging fire, and detoxifying. Study confirmed that flavonoids in PH and alkaloids in CC alleviated inflammation to inhibit the development of intestinal inflammation. However, how PH-CC affects UC was unclear. Therefore, the aim of this study is to analyze the mechanism of PH-CC on ulcerative colitis (UC) through network pharmacology and in vivo experiments. METHODS: The active ingredients and targets of PH-CC and targets of UC were screened based on related databases. The core targets of PH-CC on UC was predicted by protein-protein interaction network (PPI), and then the Gene Ontology-biological processes (GO-BP) function enrichment analysis was conducted using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The binding activity between pyroptosis proteins, core targets and effective ingredients were verified based on molecular docking technology. Finally, combined with the results of network pharmacology and literature research, the mechanism of PH-CC against UC was verified by in vivo experiments. RESULTS: There were 23 active components and 191 potential targets in PH-CC, 5275 targets in UC, and 141 co-targets. GO-BP functional analysis of 141 co-targets showed that the first 20 biological processes were closely related to inflammation and lipopolysaccharide (LPS) stimulation. Furthermore, core targets had good binding activity with the corresponding compounds. Animal experiment indicated that PH-CC effectively prevented weight loss in UC mice, reduced the disease activity index (DAI) score, maintained colon length, suppressed myeloperoxidase (MPO) activity, inhibited pyroptosis protein expression, and downregulated the levels of IL-18 and IL-1ß to alleviate intestinal inflammation. CONCLUSIONS: The results of network pharmacology and animal experiments showed that PH-CC suppressed the inflammatory response, restored colon morphology, and inhibited pyroptosis in UC mice. Thus, PH-CC may improve UC by regulating the NOD-like receptor protein domain 3 (NLRP3)/Caspase-1 signaling pathway.


Assuntos
Colite Ulcerativa , Polygonum , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Farmacologia em Rede , Coptis chinensis , Simulação de Acoplamento Molecular , Inflamação
3.
Int J Pharm ; 655: 124047, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531434

RESUMO

In this study, nanoparticles loaded with active components from Polygonum orientale L. (PO), a traditional Chinese herb known for its anti-myocardial ischemic properties, were investigated for cardio-protective properties. Specifically, OVQ-Nanoparticles (OVQ-NPs) with Orientin (Ori), Vitexin (Vit), and Quercetin (Que) was obtained by double emulsion-solvent evaporation method. The OVQ-NPs exhibited a spherical shape, with a uniform size distribution of 136.77 ± 3.88 nm and a stable ζ-potential of -13.40 ± 2.24 mV. Notably, these nanoparticles exhibited a favorable sustained-release characteristic, resulting in an extended circulation time within the living organism. Consequently, the administration of these nanoparticles resulted in significant improvements in electrocardiograms and heart mass index of myocardial ischemic rats induced by isoproterenol, as well as decreased serum levels of CK, LDH, and AST. Furthermore, the results of histopathological examination, such as H&E staining and TUNEL staining, confirmed a reduced level of cardiac tissue pathology and apoptosis. Moreover, the quantification of biochemical indicators (SOD, MDA, GSH, NO, TNF-α, and IL-6) demonstrated that OVQ-NPs effectively mitigated myocardial ischemia by regulating oxidative stress and inflammatory pathways. In conclusion, OVQ-NPs demonstrate promising therapeutic potential as an intervention for myocardial ischemia, providing a new perspective on traditional Chinese medicine treatment in this area.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Polygonum , Ratos , Animais , Isoproterenol/uso terapêutico , Polygonum/química , Isquemia Miocárdica/induzido quimicamente , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/prevenção & controle , Miocárdio/patologia
4.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396684

RESUMO

Polysaccharides are one of the main active ingredients of Polygonum sibiricum (PS), which is a food and medicine homolog used throughout Chinese history. The antidepressant-like effects of PSP and its underlying mechanisms remain elusive, especially the regulation of microglial polarization. The current study determined the chemical composition and structural characteristics of PSP. Then, the chronic unpredictable mild stress (CUMS) procedure was carried out on the zebrafish for 5 weeks, and PSP was immersed for 9 days (1 h/d). The body weight of zebrafish was monitored, and behavioral tests, including the novel tank test and light and dark tank test, were performed to evaluate the antidepressant-like effects of PSP. Then, the function of the hypothalamic-pituitary-interrenal (HPI) axis, the levels of peripheral inflammation, neuronal and blood-brain barrier damage in the mesencephalon and telencephalon, and the mRNA expression of M1/M2 phenotype genes in the brain were examined. PSP samples had the typical structural characteristics of polysaccharides, consisting of glucose, mannose, and galactose, with an average Mw of 20.48 kDa, which presented porous and agglomerated morphologies. Compared with untreated zebrafish, the depression-like behaviors of CUMS-induced zebrafish were significantly attenuated. PSP significantly decreased the levels of cortisol and pro-inflammatory cytokines and increased the levels of the anti-inflammatory cytokines in the body of CUMS-induced depressive zebrafish. Furthermore, PSP remarkably reversed the neuronal and blood-brain barrier damage in the mesencephalon and telencephalon and the mRNA expression of M1/M2 phenotype genes in the brain. These findings indicated that the antidepressant-like effects of PSP were related to altering the HPI axis hyperactivation, suppressing peripheral inflammation, inhibiting neuroinflammation induced by microglia hyperactivation, and modulating microglial M1/M2 polarization. The current study provides the foundations for future examinations of PSP in the functional foods of emotional regulation.


Assuntos
Polygonum , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Microglia/metabolismo , Polygonum/metabolismo , Antidepressivos/farmacologia , Inflamação/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Citocinas/metabolismo , RNA Mensageiro/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
5.
Fitoterapia ; 174: 105864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408515

RESUMO

The growing global need for antioxidative phenolics and flavonoids for maintenance of human health resulted into search of new sustainable unexplored medicinal plants used by the traditional healers for various ailments. Many synthetic based products of phenolics and flavonoids have been used, however the demand of eco-friendly, natural herbal based products are increasing. As a result, the current study aims to explore traditional potential of Polygonum posumbu related to its phenolics and flavonoids. Optimization of extraction parameters were employed which includes: solvent selection (water, ethanol, methanol, acetone and ethyl acetate), ethanol composition (40-100%), solvent to sample ratio (30-70 ml/g), temperature (50-80 °C) and time (1-5 h). Under optimal conditions, total phenolics (TPC), total flavonoids (TFC), the extract yield (EY) and antioxidant activities of leaves extract were 162.79 ± 2.28 mg GAE/g, 56.57 ± 6.22 mg QE/g 27.96 ± 0.91%, and 27.34 ± 0.98 µg/ml respectively. Seven flavonoids were quantified in different tissues with significant (p ≤ 0.05) differences found in flavonoids contents in different parts of the plant. Highest concentration of flavonoids was observed in stems: (-)-epicatechin-53.19 ± 1.13 mg/g, myricetin-15.90 ± 0.13 mg/g, quercetin-50.66 ± 0.08 mg/g, luteolin-43.10 ± 0.47 mg/g, apigenin-16.73 ± 0.43 mg/g. Leaves and roots had the highest amount of genistein (05.06 ± 0.01 mg/g) and kaempferol (11.13 ± 0.06 mg/g) respectively. From the study it had been found that Polygonum posumbu possess a very good amount of phenolics and flavonoids and this study details first ever investigation on this plant in terms of phenolics and flavonoids. Therefore, this study enhanced the importance of this bioresource in functional food or nutraceutical industries.


Assuntos
Polygonum , Humanos , Extratos Vegetais , Estrutura Molecular , Flavonoides , Fenóis , Quercetina , Antioxidantes , Folhas de Planta , Solventes , Etanol
6.
Nutrients ; 16(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337722

RESUMO

Polygonum sibiricum, with its medicinal and edibility dual properties, has been widely recognized and utilized throughout Chinese history. As a kind of its effective component, Polygonum sibiricum polysaccharides (PSP) have been reported to be a promising novel antidepressant agent. Meanwhile, the precise mechanisms underlying its action remain elusive. The polarization state transition of microglia is intricately linked to neuroinflammation, indicating its crucial involvement in the pathophysiology of depression. Researchers are vigorously pursuing the exploration of this potential treatment strategy, aiming to comprehend its underlying mechanisms. Hence, the current study was designed to investigate the antidepressant mechanisms of PSP via Microglial M1/M2 Polarization, based on the lipopolysaccharide (LPS)-induced BV2 cell activation model. The results indicate that PSP significantly inhibited NO and LDH release and reduced ROS levels in LPS-induced BV2 cells. PSP could significantly reduce the protein expression level of Iba-1, decreased the mRNA levels of TNF-α, IL-1ß, and IL-6, and increased the mRNA level of IL-10. PSP also significantly reduced the protein expression level of CD16/32 and increased that of CD206, reduced the mRNA level and fluorescence intensity of iNOS, and increased those of Arg-1. However, PSP pretreatment reversed the alterations of the BDNF/TrkB/CREB and Notch/Hes1 pathways in LPS-induced BV2 cells. These results suggested that PSP exerted the anti-inflammatory effects by inhibiting M1 phenotype polarization and promoting microglia polarization toward the M2 phenotype, and its regulation of microglia M1/M2 polarization may be associated with modulating the BDNF/TrkB/CREB and Notch/Hes1 pathways.


Assuntos
Microglia , Polygonum , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Polygonum/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Antidepressivos/farmacologia , RNA Mensageiro/metabolismo
7.
Vet J ; 304: 106083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38365083

RESUMO

Transmissible gastroenteritis virus (TGEV) is an important pathogen capable of altering the expression profile of cellular miRNA. In this study, the potential of Polygonum cillinerve polysaccharide (PCP) to treat TGEV-infected piglets was evaluated through in vivo experiments. High-throughput sequencing technology was employed to identify 9 up-regulated and 17 down-regulated miRNAs during PCP-mediated inhibition of TGEV infection in PK15 cells. Additionally, miR-181 was found to be associated with target genes of key proteins in the apoptosis pathway. PK15 cells were treated with various concentrations of PCP following transfection with miR-181 mimic or inhibitor. Real-time PCR assessed the impact on TGEV replication, while electron microscopy (TEM) and Hoechst fluorescence staining evaluated cellular functionality. Western blot analysis was utilized to assess the expression of key signaling factors-cytochrome C (cyt C), caspase 9, and P53-in the apoptotic signaling pathway. The results showed that compared with the control group, 250 µg/mL PCP significantly inhibited TGEV gRNA replication and gene N expression (P < 0.01). Microscopic examination revealed uniform cell morphology and fewer floating cells in PCP-treated groups (250 and 125 µg/mL). TEM analysis showed no typical virus structure in the 250 µg/mL PCP group, and apoptosis staining indicated a significant reduction in apoptotic cells at this concentration. Furthermore, PCP may inhibit TGEV-induced apoptosis via the Caspase-dependent mitochondrial pathway following miR-181 transfection. These findings provide a theoretical basis for further exploration into the mechanism of PCP's anti-TGEV properties.


Assuntos
MicroRNAs , Polygonum , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Polygonum/genética , RNA Guia de Sistemas CRISPR-Cas , Transdução de Sinais , MicroRNAs/genética
8.
J Ethnopharmacol ; 326: 117865, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38369066

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: 2,3,5,4'-tetrahydroxystilbene-2-O-ß-D-glucopyranoside (TSG) as the primary constituent of Polygonum multiflorum Thumb. (PM) possesses anti-oxidative, antihypercholesterolemic, anti-tumor and many more biological activities. The root of PM has been used as a tonic medicine for thousands of years. However, cases of PM-induced liver injury are occasionally reported, and considered to be related to the host immune status. AIM OF THE STUDY: The primary toxic elements and specific mechanisms PM causing liver damage are still not thoroughly clear. Our study aimed to investigate the influences of TSG on the immune response in idiosyncratic hepatotoxicity of PM. MATERIALS AND METHODS: The male C57BL/6 mice were treated with different doses of TSG and the alterations in liver histology, serum liver enzyme levels, proportions of T cells and cytokines secretion were evaluated by hematoxylin and eosin (HE), RNA sequencing, quantitative real time polymerase chain reaction (qRT-PCR), Flow cytometry (FCM), and enzyme-linked immunosorbent assay (ELISA), respectively. Then, primary spleen cells from drug-naive mice were isolated and cultured with TSG in vitro. T cell subsets proliferation and cytokines secretion after treated with TSG were assessed by CCK8, FCM and ELISA. In addition, mice were pre-treated with anti-CD25 for depleting regulatory T cells (Tregs), and then administered with TSG. Liver functions and immunological alterations were analyzed to evaluate liver injury. RESULTS: Data showed that TSG induced liver damage, and immune cells infiltration in the liver tissues. FCM results showed that TSG could activate CD4+T and CD8+T in the liver. Results further confirmed that TSG notably up-regulated the levels of inflammatory cytokines including TNF-α, IFN-γ, IL-18, perforin and granzyme B in the liver tissues. Furthermore, based on transcriptomics profiles, some immune system-related pathways including leukocyte activation involved in inflammatory response, leukocyte cell-cell adhesion, regulation of interleukin-1 beta production, mononuclear cell migration, antigen processing and presentation were altered in TSG treated mice. CD8+T/CD4+T cells were also stimulated by TSG in vitro. Interestingly, increased proportion of Tregs was observed after TSG treatment in vitro and in vivo. Foxp3 and TGF-ß1 mRNA expressions were up-regulated in the liver tissues. Depletion of Tregs moderately enhanced TSG induced the secretion of inflammatory cytokines in serum. CONCLUSIONS: Our findings showed that TSG could trigger CD4+T and CD8+T cells proliferation, promote cytokines secretion, which revealed that adaptive immune response associated with the mild liver injury cause by TSG administration. Regulatory T cells (Tregs) mainly sustain immunological tolerance, and in this study, the progression of TSG induced liver injury was limited by Tregs. The results of our investigations allow us to preliminarily understand the mechanisms of PM related idiosyncratic hepatotoxicity.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fallopia multiflora , Polygonum , Estilbenos , Camundongos , Masculino , Animais , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Citocinas/genética , Imunidade , Estilbenos/toxicidade , Estilbenos/uso terapêutico
9.
Int J Food Microbiol ; 410: 110442, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37984213

RESUMO

The raw and processed roots of Polygonum multiflorum Thunb is a popular traditional Chinese medicine. However, Polygoni Multiflori Radix is easily contaminated by toxigenic fungi and mycotoxins during harvesting, processing, and transportation, thereby posing a health risk for consumers. This study aims to investigate the presence of fungi on the surface of raw and processed Polygoni Multiflori Radix collected from four producing areas using high-throughput sequencing. Results showed that the phyla Ascomycota and Basidiomycota, the genera Xeromyces, Cystofilobasidium, Eurotium, and Aspergillus were the dominant fungus, and significant differences are presented in four areas and two processed products. Three potential mycotoxin-producing fungi were detected, namely Trichosporon cutaneum, Aspergillus restrictus, and Fusarium oxysporum. The α-diversity and network complexity showed significant differences in four areas. Chao 1 and Shannon were highest in Yunnan (YN), then incrementally decreased from SC (Sichuan) to AH (Anhui) and GD (Guangdong) areas. Meanwhile, α-diversity was also strongly influenced by processing. Chao 1 and Shannon indices were higher in the raw group, however, the network complexity and connectivity were higher in the processed group. In conclusion, the assembly and network of the surface microbiome on Polygoni Multiflori Radix were influenced by sampling location and processing. This work provides details on the surface microbiome of Polygoni Multiflori Radix samples, which could ensure the drug and consumers' safety.


Assuntos
Medicamentos de Ervas Chinesas , Micotoxinas , Polygonum , China , Medicina Tradicional Chinesa , Raízes de Plantas
10.
Biomed Chromatogr ; 38(2): e5768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38087457

RESUMO

Polygoni Multiflori Radix (PMR) is a medicinal herb commonly used in China and Eastern Asia. Recently, the discovery of hepatotoxicity in PMR has received considerable attention from scientists. Processing is a traditional Chinese medicine technique used for the effective reduction of toxicity. One uncommon technique is the braising method-also known as 'Wen-Fa' in Chinese-which is used to prepare tonics or poisonous medications. Braised PMR (BPMR)-also known as 'Wen-He-Shou-Wu'-is one of the processed products of the braising method. However, the non-volatile components of BPMR have not been identified and examined in detail, and therefore, the hepatotoxic advantage of BPMR remains unknown. In this study, we compared the microscopic characteristics of different samples in powder form using scanning electron microscopy (SEM), investigated the non-volatile components, assessed the effects of different processed PMR products on the liver, and compared the differences between BPMR and PMR Praeparata recorded in the Chinese Pharmacopoeia (2020 edition). We found that the hepatotoxicity of BPMR was dramatically decreased, which may be related to an increase in polysaccharide content and a decrease in toxic substances. The present study provides an important foundation for future investigations of the processing mechanisms of BPMR.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Polygonum , Medicamentos de Ervas Chinesas/química , Polygonum/química , Compostos Fitoquímicos/análise , Raízes de Plantas/química
11.
J Sep Sci ; 47(1): e2300750, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066395

RESUMO

Polygonum cognatum Meissn, a perennial herbaceous belonging to the Polygonaceae family, is an aromatic plant. High-performance liquid chromatography/diode array detector method was developed and validated for the phytochemical analysis of the plant. Also, various methods were used to investigate the antioxidant, antimicrobial, and cytotoxic activities of the methanolic extracts. Antioxidant activities were researched by 2,2'-diphenyl-1-picrylhydrazyl and cupric reducing antioxidant capacity methods. Among the tested standard microbial strains, Candida albicans was found to be more sensitive with a 24.60 ± 0.55 mm inhibition zone according to the diffusion tests. In the microdilution tests, the minimum inhibitory concentration and minimum bactericidal/fungicidal concentration values were 4.75 and ≥ 4.75 mg/mL, respectively, for all tested pathogens. Human colon carcinoma cells were used to investigate cytotoxicity by using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide analysis (IC50  = 2891 µg/mL for Plant A, IC50  = 3291 µg/mL for Plant B). Molecular docking and absorption, distribution, metabolism, excretion, and toxicity analysis were used to explain inhibition mechanisms of major phenolic compounds of plants against Tankyrase 1, Tankyrase 2 enzymes, and deoxyribonucleic acid gyrase subunit B and found compatible with experimental results.


Assuntos
Polygonum , Tanquirases , Humanos , Polygonum/química , Extratos Vegetais/química , Simulação de Acoplamento Molecular , Antioxidantes/análise , Compostos Fitoquímicos/farmacologia
12.
Food Res Int ; 175: 113755, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129053

RESUMO

This work aimed to illuminate the mechanism of Polygonatum cyrtonema polysaccharide (PCP-80%) triggered immune activation. Results showed that PCP-80% enhanced the protein expression of COX-2 and iNOS, along with increasing the release of NO, ROS, cytokines (TNF-α, IL-6) in RAW264.7 cells. RNA-seq analysis revealed 2160 differentially expressed genes (DEGs) following PCP-80% treatment, comprising 1142 up-regulated and 1018 down-regulated genes. In addition, for investigating possible regulatory mechanisms, the NF-κB, MAPKs, and JAK-STAT signaling pathways were also chosen based on bioinformatics analysis. Furthermore, these findings were further corroborated through Western blot experiments, validating the activation of JAK-STAT (reduction of JAK1 in cells and elevation of p-STAT3 in the nucleus), MAPK (elevation of p-p38, p-ERK1/2, and p-JNK), and NF-κB (elevation of p-IκBα in cells, reduction of cytoplasmic p65, and increase of nuclear content of p-p65) in macrophage activation induced by PCP-80%. Besides, the production of NO and TNF-α was decreased by the inhibitor of the three pathways. In conclusion, these findings provide strong evidence that PCP-80% effectively modulates the immune response of macrophages, with significant involvement of the JAK-STAT, MAPKs, and NF-κB signaling pathways.


Assuntos
NF-kappa B , Polygonum , NF-kappa B/genética , NF-kappa B/metabolismo , Polygonum/metabolismo , Fator de Necrose Tumoral alfa , RNA-Seq , Polissacarídeos/farmacologia , Imunidade
13.
J Ethnopharmacol ; 319(Pt 3): 117330, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37863399

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) holds that non-alcoholic fatty liver disease (NAFLD) belong to the category of "thoracic fullness". Polygonum perfoliatum L. (PPL), a Chinese medicinal herb with the effect of treating thoracic fullness, was recorded in the ancient Chinese medicine book "Supplements to Compendium of Materia Medica". It has been used since ancient times to treat NAFLD. However, the underlying mechanism and active components of PPL against NAFLD remains unclear. AIM OF STUDY: To identify the main active components and the anti-NAFLD mechanism of PPL. MATERIALS AND METHODS: Network pharmacology, UPLC/QE-HFX analysis, and molecular docking were employed to determine the main bioactive compounds and key targets of PPL for the NAFLD treatment. This effect was further validated with administration of PPL (200 mg/kg and 400 mg/kg) to NAFLD model mice for 5 weeks. Systemic signs of obesity, biochemical parameters, and histological changes were characterized. Immunohistochemistry, western blot, and PCR analysis were conducted to elucidate the mechanistic pathways through which PPL exerts its effects. RESULTS: Network pharmacology revealed 77 crossover genes between the PPL and NAFLD. The kyoto encyclopedia of genes and genomes (KEGG) analysis show that PPL treat NAFLD mainly regulating glucose-lipid metabolism mediated by PI3K/AKT signal pathway. The Gene Ontology (GO) enrichment analysis show that PPL treat NAFLD mainly regulating inflammation mediated by cytokine-mediated signaling pathway. In accordance with the anticipated outcomes, administration of PPL in a dose-dependent manner effectively mitigated insulin resistance induced by a high-fat diet (HFD) by activating the PI3K/AKT signaling pathway. Histopathological evaluation corroborated the hepatoprotective effects of PPL against HFD-induced hepatic steatosis, as evidenced by the inhibition of de novo fatty acid synthesis and promotion of fatty acid ß-oxidation (FAO). Further research showed that PPL blocked cytokine production by inhibiting the NF-κB pathway, thereby reducing immune cell infiltration. Furthermore, five flavonoids from PPL, including quercetin, baicalein, galangin, apigenin, and genistein were identified as key compounds based on ingredient-target-pathway network analysis. Molecular docking show that these active compounds have favorable binding interactions with AKT1, PIK3R1, and MAPK1, further confirming the impact of PPL on the PI3K/AKT pathway. CONCLUSIONS: Through the combination of network pharmacology prediction and experimental validation, this work determined that therapeutic effect of PPL on NAFLD, and such protective effect is mediated by activating PI3K/AKT-mediated glucolipid metabolism pathway and hepatic NF-κB-mediated cytokine signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Polygonum , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , NF-kappa B , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Ácidos Graxos , Citocinas
14.
Biomed Chromatogr ; 38(3): e5809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109869

RESUMO

Polygonum cognatum Meisn. (Polygonaceae) is used both as food and as a folk medicine to treat diabetes. This study aimed to evaluate the effect of the extracts, along with isolated compounds, from P. cognatum aerial parts on diabetes. In vitro studies were conducted using an α-glucosidase inhibitory assay, while in vivo antidiabetic studies were carried out on streptozotocin-induced diabetic rats. Effective extracts were subjected to isolation studies, and structures of the compounds were elucidated by spectroscopic methods. The ethyl acetate and n-butanol extracts had the highest effect in both in vitro and in vivo experiments. They also decreased aspartate transaminase, alanine transaminase and malondialdehyde levels, while increasing glutathione and superoxide dismutase activity in rats. From the active extracts, 11 phenolic compounds were isolated and characterized. Among the isolated compounds, quercetin was found to be the most active according to α-glucosidase inhibitory activity studies. This study provided scientific evidence for the traditional use of P. cognatum as a folk medicine for treating diabetes. The findings suggest that the ethyl acetate and n-butanol extracts, as well as quercetin, have the potential for development as antidiabetic agents.


Assuntos
Acetatos , Diabetes Mellitus Experimental , Polygonum , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Polygonum/química , Diabetes Mellitus Experimental/tratamento farmacológico , Quercetina , 1-Butanol , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
15.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38015052

RESUMO

A Gram-stain-positive, aerobic, rod-shaped, non-motile, yellowish and glossy strain, C31T, was isolated from a wetland plant Polygonum lapathifolium L. located south of Poyang Lake, Jiangxi Province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C31T showed similarity values of lower than 97.0 % to other type species belonging to the genus Paenibacillus. The genomic average nucleotide identity values between strain C31T and its reference type species ranged from 68.9-70.9 % and the digital DNA-DNA hybridization values were lower than 27.8 %. The genomic DNA G+C content of strain C31T was 41.9 mol%. The optimal growth temperature, pH and NaCl concentration were 37 °C, pH 7 and 0.5 %, respectively. The major cellular fatty acids (>5.0 %) of strain C31T were anteiso-C15 : 0 (73.7 %), anteiso-C17 : 0 (8.4 %) and iso-C15 : 0 (5.2 %). The polar lipids of strain C31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and unidentified phospholipids. The respiratory quinone was MK-7. Based on these phylogenetic and phenotypic characterizations, strain C31T represents a novel species within the genus Paenibacillus. Therefore, the proposed name for this newly identified species is Paenibacillus polygoni sp. nov. and the type strain is C31T (=CCTCC AB 2022349T=KCTC 43565T).


Assuntos
Paenibacillus , Polygonum , Composição de Bases , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Áreas Alagadas , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Paenibacillus/genética
16.
Sci Rep ; 13(1): 18368, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884620

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide with novel therapeutic developmental challenges. Polygonum barbatum has anticancer potential, but its mechanism(s) are unclear. This study investigates the inhibitory effect of P. barbatum on human CRC cells. Polygonum barbatum extract (PBE) and quercetin standard HPLC fingerprints were determined using analytical RP-HPLC and evaluations were completed using the human colon cancer cell line HCT-116 (KRASG13D mutation) and HT-29 (BRAF mutation) cells. Post-PBE treatment, cell viability, colony formation, migration, invasion, and apoptosis, as well as changes in the whole-transcriptome of cells were analyzed. PBE significantly reduced CRC cell growth, migration, and invasion, and the genes responsible for extracellular matrix (ECM) organization, cell motility, and cell growth were suppressed by PBE. The differentially expressed genes revealed that PBE treatment exerted a significant effect on the ECM interaction and focal adhesion pathways. Epithelial-to-mesenchymal transition markers, N-cadherin, vimentin, SLUG, and SNAIL, were shown to be regulated by PBE. These effects were associated with blockade of the Yes-associated protein and the GSK3ß/ß-catenin axis. PBE exerts a significant inhibitory effect on CRC cells and may be applicable in clinical trials.


Assuntos
Neoplasias Colorretais , Extratos Vegetais , Polygonum , Humanos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Extratos Vegetais/farmacologia
17.
Physiol Plant ; 175(5): e14032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882300

RESUMO

Japanese knotweed (Fallopia japonica) and Bohemian knotweed (Fallopia × bohemica) are invasive plants that use allelopathy as an additional mechanism for colonization of the new habitat. Allelochemicals affect the growth of roots of neighboring plants. In the present study, we analyze the early changes associated with the inhibited root growth of radish seedlings exposed to aqueous extracts of knotweed rhizomes for 3 days. Here, we show that cells in the root cap treated with the knotweed extracts exhibited reduced cell length and displayed several ultrastructural changes, including the increased abundance of dilated ER cisternae filled with electron-dense material (ER bodies) and the accumulation of dense inclusions. Moreover, mitochondrial damage was exhibited in the root cap and the meristem zone compared to the non-treated radish seedlings. Furthermore, malfunction of the intracellular redox balance system was detected as the increased total antioxidative capacity. We also detected increased metacaspase-like proteolytic activities and, in the case of 10% extract of F. japonica, increased caspase-like proteolytic activities. These ultrastructural and biochemical effects could be the reason for the more than 60% shorter root length of treated radish seedlings compared to controls.


Assuntos
Fallopia japonica , Fallopia , Polygonum , Raphanus , Meristema , Plântula , Reynoutria
18.
Medicine (Baltimore) ; 102(37): e34912, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713849

RESUMO

Pulmonary fibrosis (PF) is a serious interstitial disease that includes diffuse collagen deposition of lung tissue. Polygonum capitatum Buch.-Ham. ex D. Don (THL) is a traditional vaccine that has antibacterial and anti-inflammatory effects. In this research, to investigate the mechanism of action of THL in the intervention of pulmonary fibrosis by network pharmacology and molecular docking related research methods, in order to provide a theoretical basis for expanding the scope of THL medication. A total of 49 active ingredients were analyzed and screened in Cephalus cephalusis, including 35 pulmonary fibrosis targets, and 10 key targets such as ALB, EGFR were screened after software analysis. The molecular docking results showed that there were 44 binding energies less than -3 kcal·mol-1 in the 60 docking results, indicating that most proteins had strong binding energies with compounds. The key targets of KEGG enrichment analysis were mainly enriched in 20 core action pathways, such as hemostasis-related pathway, regulation of kinase activity. This study shows that based on network pharmacology, the multicomponent-multitarget-multipathway effect of THL intervention in pulmonary fibrosis is discussed.


Assuntos
Polygonum , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Farmacologia em Rede , Simulação de Acoplamento Molecular , Antibacterianos
19.
Molecules ; 28(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764502

RESUMO

Neuronal models are an important tool in neuroscientific research. Hydrogen peroxide (H2O2), a major risk factor of neuronal oxidative stress, initiates a cascade of neuronal cell death. Polygonum minus Huds, known as 'kesum', is widely used in traditional medicine. P. minus has been reported to exhibit a few medicinal and pharmacological properties. The current study aimed to investigate the neuroprotective effects of P. minus ethanolic extract (PMEE) on H2O2-induced neurotoxicity in SH-SY5Y cells. LC-MS/MS revealed the presence of 28 metabolites in PMEE. Our study showed that the PMEE provided neuroprotection against H2O2-induced oxidative stress by activating the Nrf2/ARE, NF-κB/IκB and MAPK signaling pathways in PMEE pre-treated differentiated SH-SY5Y cells. Meanwhile, the acetylcholine (ACH) level was increased in the oxidative stress-induced treatment group after 4 h of exposure with H2O2. Molecular docking results with acetylcholinesterase (AChE) depicted that quercitrin showed the highest docking score at -9.5 kcal/mol followed by aloe-emodin, afzelin, and citreorosein at -9.4, -9.3 and -9.0 kcal/mol, respectively, compared to the other PMEE's identified compounds, which show lower docking scores. The results indicate that PMEE has neuroprotective effects on SH-SY5Y neuroblastoma cells in vitro. In conclusion, PMEE may aid in reducing oxidative stress as a preventative therapy for neurodegenerative diseases.


Assuntos
Antígenos de Grupos Sanguíneos , Neuroblastoma , Fármacos Neuroprotetores , Polygonum , Humanos , Peróxido de Hidrogênio/toxicidade , Neuroblastoma/tratamento farmacológico , Acetilcolinesterase , Cromatografia Líquida , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Espectrometria de Massas em Tandem , Anticorpos , Etanol
20.
Biomed Pharmacother ; 166: 115315, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579693

RESUMO

Polygonum perfoliatum L. is an herbal medicine that has been extensively used in traditional Chinese medicine to treat various health conditions ranging from ancient internal to surgical and gynecological diseases. Numerous studies suggest that P. perfoliatum extract elicits significant anti-tumor, anti-inflammatory, anti-bacterial, and anti-viral effects. Nevertheless, the underlying mechanisms of its anti-liver cancer effects remain poorly understood. Our study suggests that P. perfoliatum stem extract (PPLA) has a favorable safety profile and exhibits a significant anti-liver cancer effect both in vitro and in vivo. We identified that PPLA activates the cGMP-PKG signaling pathway, and key regulatory genes including ADRA1B, PLCB2, PRKG2, CALML4, and GLO1 involved in this activation. Moreover, PPLA modulates the expression of genes responsible for the cell cycle. Additionally, we identified four constituents of PPLA, namely taxifolin, myricetin, eriodictyol, and pinocembrin, that plausibly act via the cGMP-PKG signaling pathway. Both in vitro and in vivo experiments confirmed that PPLA, along with its constituting compounds taxifolin, myricetin, and eriodictyol, exhibit potent anti-cancer activities and hold the promise of being developed into therapeutic agents.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Plantas Medicinais , Polygonum , Humanos , Polygonum/química , Carcinoma Hepatocelular/tratamento farmacológico , Anti-Inflamatórios/química , Neoplasias Hepáticas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...